Effect of four cavity varnishes and a fluoride solution on microleakage of dental amalgam restorations

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

- You have cookies disabled in your browser. You need to reset your browser to accept cookies or to ask you if you want to accept cookies.
- Your browser asks you whether you want to accept cookies and you declined. To accept cookies from this site, use the Back button and accept the cookie.
- Your browser does not support cookies. Try a different browser if you suspect this.
- The date on your computer is in the past. If your computer's clock shows a date before 1 Jan 1970, the browser will automatically forget the cookie. To fix this, set the correct time and date on your computer.
- You have installed an application that monitors or blocks cookies from being set. You must disable the application while logging in or check with your system administrator.

Why Does this Site Require Cookies?

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

What Gets Stored in a Cookie?

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

The ability of a varnish to effectively seal an amalgam restored cavity appears to depend on the type of alloy and varnish, its solubility, the time elapsed between varnish placement and leakage assessment and the number of layers of varnish. Murray, GA, Yates, JL & Williams, JI (1983) Effect of four cavity varnishes and a fluoride solution on microleakage of dental amalgam restorations. Operative Dentistry, 8,148-151. Newman, SM (1984) Microleakage of a copal rosin cavity varnish. Journal of Prosthetic Dentistry, 51, 499-502. Newman, SM & Szojka, F (1986) Effects of high-copper alloys on microleakage changes across time. Journal of Dental Research, 65, Abst no. 448, p 219. In microleakage tests, fresh amalgam restorations usually show total involvement with the cavity wall. However, it has been reported that an initial poor seal of fresh amalgams improves with aging due to the deposition of corrosion products at the cavity-restoration interface. It is frequently reported that patients only complain about post-operative sensitivity during the first week after placement, where after the pain will disappear. Effect of placement techniques on microleakage of a dentin bonded composite resin. Quintessence Int 1986; 17: 21-24. Detection of microleakage around dental restorations: a review. Op Dent 1997; 22: 173-185. 78. Davidson CL, Feilzer AJ. Microleakage of a copal rosin cavity varnish J Sheldon M. Newman, D.D.S., M.S.* University of Alberta, Faculty of Dentistry, Edmonton, Alta. Cavity varnishes have been used... under amalgam restorations have been achieved through the use of a variety of materials. Liners that contained zinc oxide or calcium hydroxide led to an extensive amount of microleakage.6 Cyanoacrylate polymers have failed to decrease microleakageF9 In one study a polymer veneer was effective in decreasing microleakage, but dye penetration, which has given variable results in vitro, was used as the indicator of microleakage. o-12 The one product that has been continually effective.