Garrett Augustus Morgan, Sr. (March 4, 1877 – August 27, 1963) was an inventor who invented a type of respiratory protective hood (conceptually similar to modern gas masks), a type of traffic signal, and a hair-straightening preparation. He is renowned for a heroic rescue in which he used his hood to save workers trapped in a tunnel system filled with fumes. He is credited as the first African-American in Cleveland to own an automobile.[1]

Garrett Morgan patented a safety hood and smoke protector after seeing firefighters struggling from the smoke they encountered in the line of duty[2] and hearing about the Triangle Shirtwaist Factory fire.[citation needed] His device used a wet sponge to filter out smoke and cool the air.[3] He was able to sell his invention around the country, sometimes using the tactic of having a hired white actor take credit rather than revealing himself as its inventor.[2] For demonstrations of the device, he sometimes adopted the disguise of “Big Chief Mason”, a purported full-blooded Indian from the Walpole Island Indian Reservation in Canada.[4] His invention became known nationally when he and three other men used it to save several men after a 1916 tunnel explosion under Lake Erie.[5] Cleveland's newspapers and city officials initially ignored Morgan's personal acts of heroism as the first to rush into the tunnel for the rescue, and it took years for the city to recognize his contributions.[2] Eventually, Morgan was awarded a gold Medal of Bravery by prominent citizens of Cleveland and a gold medal for bravery from the International Association of Fire Chiefs.[5]

Morgan's invention of the safety hood was featured on the television show “Inventions that Shook the World”.[6]

Traffic signal

See also: Traffic signal#History
References

Morgan died on August 27, 1963, at the age of 86, and is buried at Lake View Cemetery in Cleveland, Ohio. In 2002, scholar Edward A. Mueller, “Aspects of the History of Traffic Signals”, IEEE Transactions on Vehicular Technology, vol. VT-19, no. 1, pp.6-17 (1970) appeared either in the U.S. patent assignment records at the National Archives, the GE historical business records at the Schenectady Museum in New York, or in Morgan’s own legal and business papers at the Western Reserve Historical Society in Cleveland. Advertisements and photos from the 1920s indicate that GE’s early traffic signal products were of the more modern electric variety, not manually operated semaphores. Several GE patent acquisitions from the early-to-mid 1920s show that the company was investing heavily in solid-state electronic circuitry and automated traffic signaling devices during that time. By the end of 1926, GE had begun experimenting with traffic-controlled systems (as opposed to timer-controlled devices); it is highly implausible that GE would consider investing $40,000 (over $500,000 USD inflation-adjusted to 2011) in a manual, crank-driven signaling device during an era when the company was researching, developing and producing solid-state analog circuitry and actively implementing these technologies into their signals.

Awards and recognitions

Grave of Garrett A. Morgan

At the Emancipation Centennial Celebration in Chicago, Illinois in August 1963, Morgan was nationally recognized. Although in ill-health, and nearly blind, he continued to work on his inventions; one of his last was a self-extinguishing cigarette, which employed a small plastic pellet filled with water, placed just before the filter.

In Prince George’s County, Maryland, the Prince George’s County Board renamed Summerfield Boulevard to Garrett A. Morgan Boulevard in his honor. The adjacent Washington Metro’s Morgan Boulevard Station was going to be named Summerfield, but was consequently renamed as well. Also named in his honor is the Garrett A. Morgan Cleveland School of Science in Cleveland, Ohio. In 2002, scholar Molefi Kete Asante included Morgan on his list of 100 Greatest African Americans.

Morgan was a Prince Hall Freemason (Excelsior Lodge No. 11 of Cleveland, Ohio) and an honorary member of Alpha Phi Alpha fraternity.

Morgan died on August 27, 1963, at the age of 86, and is buried at Lake View Cemetery in Cleveland, Ohio.

References

2. a b c Who Made America? Pioneers: Garrett Augustus Morgan PBS.org.
9. a http://www.socialstudiesforkids.com/articles/ushistory/garrettmorgan.htm ("...[He] invented what would become the traffic light.")
10. a http://www.blackinventor.com/pages/garrett-morgan.html ("...[Morgan's traffic signal] became the standard across the country. Today's modern traffic lights are based upon Morgan's original design.")
11. a http://www.moptopshop.com/garrett_morgan.html ("...The traffic signals we use today are based on Garrett Morgan's invention...")
Patricia Bath, Inventor – Laserphaco Probe, a medical device “for ablating and removing cataract lense” Leave a comment

Patricia Bath (born November 4, 1942, Harlem, New York) is an African American and Native American ophthalmologist, inventor and academic. She has broken ground for women and African Americans in a number of areas. Prior to Bath, no woman had served on the staff of the Jules Stein Eye Institute, headed a post-graduate training program in ophthalmology or been elected to the honorary staff of the UCLA Medical Center (an honor bestowed on her after her retirement). Before Bath, no black person had served as a resident in ophthalmology at New York University and no black woman had ever served on staff as a surgeon at the UCLA Medical Center. Bath is the first African American woman doctor to receive a patent for a medical purpose. Her Laserphaco Probe is used around the world to treat cataracts. The holder of four patents, she is also the founder of the American Institute for the Prevention of Blindness in Washington D.C.

Contents

[show]

- 1 Early life and education
- 2 Career
- 3 Inventions
- 4 Honors
- 5 Notes
- 6 References
- 7 External links

[edit] Early life and education

Born in New York City on November 4, 1942, Bath was the daughter of Rupert and Gladys Bath.[1] Her father, an immigrant from Trinidad, was a newspaper columnist, a merchant seaman and the first black man to work for the New York City Subway as a motorman.[1][2] Raised in Harlem, Bath was encouraged academically by her parents.

Inspired by Albert Schweitzer,[2] Bath applied for and won a National Science Foundation Scholarship while attending Charles Evans Hughes High School; this led her to a research project at Yeshiva University and Harlem Hospital Center on cancer that piqued her interest in medicine.[3][4] In 1960, still a teenager, Bath won the “Merit Award” of Mademoiselle magazine for her contribution to the project.[2]
Bath interned at Harlem Hospital Center, subsequently serving as a fellow at Columbia University. During this period, from 1968 to 1970, Bath became aware that the practice of eye care was uneven among racial minorities and poor populations, with much higher incidence of blindness among her black and poor patients. She determined that, as a physician, she would help address this issue. She persuaded her professors from Columbia to operate on blind patients at Harlem Hospital Center, which had not previously offered eye surgery, at no cost. Bath pioneered the worldwide discipline of “community ophthalmology”, a volunteer-based outreach to bring necessary eye care to underserved populations.

She served her residency in ophthalmology at New York University from 1970 to 1973, the first African American to do so in her field.

Career

After completing her education, Bath served briefly as an assistant professor at Jules Stein Eye Institute at UCLA and Charles R. Drew University of Medicine and Science before becoming the first woman on faculty at the Eye Institute. In 1978, Bath co-founded the American Institute for the Prevention of Blindness, for which she served as president. In 1983, she became the head of a residency in her field at Charles R. Drew, the first woman ever to head such a department. In 1993, she retired from UCLA, which subsequently elected her the first woman on its honorary staff.

She served as a professor of Ophthalmology at Howard University’s School of Medicine and as a professor of Psychology and Ophthalmology at St. Georges University. She was among the co-founders of the King-Drew Medical Center ophthalmology training program.

Bath has lectured internationally and authored over 100 papers.

Inventions

Bath holds four patents in the United States. In 1981, she conceived of the Laserphaco Probe. Three of Bath’s four patents relate to the Laserphaco Probe.

Bath pioneered the worldwide discipline of “community ophthalmology”, a volunteer-based outreach to bring necessary eye care to underserved populations.

She served her residency in ophthalmology at New York University from 1970 to 1973, the first African American to do so in her field.

Honors

Bath has been honored by two of her universities. Hunter College placed her in its “hall of fame” in 1988 and Howard University declared her a “Howard University Pioneer in Academic Medicine” in 1993.

Notes

1. ^ “Patricia Bath” (Black Inventor On-Line Museum).
8. ^ “Dr. Patricia E. Bath” (NIMH).

References

Lewis Howard Latimer (September 4, 1848 – December 11, 1928) was an African American inventor and draftsman.

Early life

Lewis Howard Latimer was born in Chelsea, Massachusetts on September 4, 1848 as the youngest of the five children of Rebecca Smith (1826–1910) and George Latimer (July 4, 1818 – May 29, 1896). George Latimer had been the slave of James B. Gray of Virginia. George Latimer ran away to freedom in Trenton, New Jersey in October, 1842, along with his wife Rebecca, who had been the slave of another man. When Gray, the owner, appeared in Boston to take them back to Virginia, it became a noted case in the movement for abolition of slavery, gaining the involvement of such abolitionists as William Lloyd Garrison. Eventually funds were raised to pay Gray $400 for the freedom of George Latimer.[1] Lewis Latimer joined the U.S. Navy at the age of 15 on September 16, 1863, and served as a landsman on the USS Massasoit. After receiving an honorable discharge from the Navy on July 3, 1865, he gained employment as an office boy with a law firm, Crosby Halstead and Gould, with a $3.00 per week salary. He learned how to use an L square, ruler, and other tools. Later, after his boss recognized his talent for sketching patent drawings, Latimer was promoted to the position of head draftsman earning $20.00 a week by 1878.[2]

In 1876, Alexander Graham Bell employed Latimer, then a draftsman at Bell’s patent law firm, to draft the necessary drawings required to receive a patent for Bell’s telephone.[3]

In 1879, he moved to Bridgeport, Connecticut with his brother, William, his mother, Rebecca, and his wife, Mary. Other family members, his brother George A. Latimer and his wife Jane, and his sister Margaret and her husband Augustus T. Hawley and their children, were already living there. Lewis was hired as assistant manager and draftsman for the U.S. Electric Lighting Company, a company owned by Hiram Maxim, a rival of Thomas A. Edison. Latimer received a patent in January 1881 for the “Process of Manufacturing Carbons”, an improved method for the production of carbon filaments for the light bulb. The Edison Electric Light Company in New York City hired Latimer in 1884, as a draftsman and an expert witness in patent litigation on electric lights.

Personal life

He married Mary Wilson Lewis on November 15, 1873 in Fall River, Massachusetts; she was born in Providence, Rhode Island, the daughter of William and Louisa M. Lewis.[3] The couple had two daughters, Emma Jeanette (born on June 12, 1883, died in February 1978) and Louise Rebecca (born April 19, 1890, died in January 1963). Jeanette married Gerald F. Norman, the first black hired as a high school teacher in the New York City public school system,[4] and had two children, Winifred Latimer Norman (born 1914), a retired social worker who serves as the guardian of her grandfather’s legacy; and Gerald L. Norman (1911–90), who became an administrative law judge.

Inventions

In 1874, he copatented (with Charles W. Brown) an improved toilet system for railroad cars called the Water Closet for Railroad Cars (U.S. Patent 147,363). Latimer received a patent in January 1881 for the “Process of Manufacturing Carbons”, an improved method for the production of carbon filaments used in lightbulbs.[5]

Legacy

Latimer is an inductee of the National Inventors Hall of Fame for his work on electric filament manufacturing techniques.[6]

Latimer was a founding member of the Flushing, New York Unitarian Church. Latimer’s home has been moved to a small park in Flushing, New York and turned into a museum in honor of the inventor.[7]

A set of apartment houses in Flushing are called “Latimer Gardens”[8]

P.S. 56 in Clinton Hill, Brooklyn, is named Lewis H. Latimer School in Latimer's honor.
Granville T. Woods, Inventor Leave a comment

Granville T. Woods (April 23, 1856 – January 30, 1910), was an African-American inventor who held more than 60 patents. Most of his work was on trains and street cars. Woods also invented the Multiplex Telegraph, a device that sent messages between train stations and moving trains. Born in Columbus, Ohio, on April 23, 1856, Granville T. Woods dedicated his life to developing a variety of inventions relating to the railroad industry.

Early life

Granville T. Woods literally learned his skills on the job. Attending school in Columbus until age 10, he served an apprenticeship in a machine shop and learned the trades of machinist and blacksmith. During his youth he also went to night school and took private lessons. Although he had to leave formal school at age ten, Woods realized that learning and education were essential to developing critical skills that would allow him to express his creativity with machinery. In 1872, Woods obtained a job as a fireman on the Danville and Southern Railroad in Nebraska, eventually becoming an engineer. He invested his spare time in studying electronics. In 1874, he moved to Springfield, Illinois, and worked in a rolling mill. In 1878, he took a job aboard the Ironsides, a British steamer, and, within two years, became Chief Engineer of the steamer. Finally, his travels and experiences led him to settle in Cincinnati, Ohio, where he became dedicated to modernizing the railroad.

Inventions

Woods developed several improvements to the railroad system, and was referred to by some as the “Black Edison.”

In 1885, Woods patented an apparatus which was a combination of a telephone and a telegraph. The device, which he called “telegraphony”, would allow a telegraph station to send voice and telegraph messages over a single wire. He sold the rights to this device to the American Bell Telephone Company. In 1887, he patented the Synchronous Multiplex Railway Telegraph, which allowed communications between train stations from moving trains. Thomas Edison later filed a claim to the ownership of this patent. In 1888, Woods manufactured a system of overhead electric conducting lines for railroads modeled after the system pioneered by Charles van Depoele, a famed inventor who had by then installed his electric railway system in thirteen U.S. cities. In 1889, he filed a patent for an improvement to the steam-boiler furnace.

Woods is sometimes credited with the invention of the electric third rail, however, many third rail systems were in place in both Europe and North America at the time Woods filed for his patent in 1901. Thomas Edison had been awarded a patent for the third rail almost a decade earlier, in 1882.[1]

By the time of his death in 1910, Woods had made a successful career as an engineer and inventor.
George Edward Alcorn, Jr. was born on March 22, 1940, to George and Arletta Dixon Alcorn. His father was an auto mechanic who sacrificed so Alcorn and his brother could get an education. Alcorn attended Occidental College in Pasadena, California, where he maintained an excellent academic record while earning eight letters in baseball and football. Alcorn graduated with a B.A. in physics in 1962, and in 1963 he completed a master’s degree in nuclear physics from Howard University. During the summers of 1962 and 1963, Alcorn worked as a research engineer for the Space Division of North American Rockwell, computing trajectories and orbital mechanics for missiles. A NASA grant supported Alcorn’s research on negative ion formation during the summers of 1965 and 1966. In 1967 he earned his doctorate from Howard University in atomic and molecular physics.

After earning his Ph.D., Alcorn spent twelve years in industry. He was senior scientist at Philco-Ford, senior physicist at Parker-Elmer, and advisory engineer at IBM Corporation. In 1973, Alcorn was chosen to be IBM Visiting Professor in Electrical Engineering at Howard University, and he has held positions at that university ever since, rising to the rank of full professor. Alcorn is also a full professor in the department of electrical engineering at the University of the District of Columbia, where he has taught courses ranging from advanced engineering mathematics to microelectronics.

Alcorn left IBM, where he worked as a Second Plateau Inventor, to join NASA in 1978. While at NASA, Alcorn invented an imaging x-ray spectrometer using thermomigration of aluminum, for which he earned a patent in 1984, and two years later he devised an improved method of fabrication using laser drilling. His work on imaging x-ray spectrometers earned him the 1984 NASA/GSFC Inventor of the Year Award. During this period he also served as deputy project manager for advanced development, and in this position he was responsible for developing new technologies required for the space station Freedom. Alcorn served as manager for advanced programs at NASA/GSFC from 1990 to 1992, and his primary duties concerned the managing of technology programs and evaluating technologies which were required by GSFC. He also managed the GSFC Evolution Program, concerned with ensuring that over its 30-year mission the space station develops properly while incorporating new capabilities.

Since 1992, Alcorn has served as chief of Goddard’s Office of Commercial Programs supervising programs for technology transfer, small business innovation research, and the commercial use of space programs. He managed a shuttle flight experiment that involved Robot Operated Material Processing System, or ROMPs, in 1994. The experiment involved the manufacture of materials in the microgravity of space.

In 1999 Alcorn was awarded Government Executive Magazine’s prestigious—Government Technology Leadership Award (there were only two awards in all of NASA’s ten centers that year) for the development and commercialization of — THE AIRBORNE LIDAR TOPOGRAPHICAL MAPPING SYSTEM (ALTMS). In 2001 Dr. Alcorn was awarded special congressional recognition by Congresswoman Donna M. Christian-Christensen (D-VI) for his efforts in helping Virgin Islands businesses through application of NASA technology and knowledge of technology programs.

Until recently, Dr. Alcorn was Chief of the Office of Commercial Programs for the Goddard Space Flight Center. In 2005 he became Assistant Director For Standards /Excellence – Applied Engineering and Technology Directorate

George Edward Alcorn, Jr. is responsible for a number of inventions now widely used in the semiconductor industry. He is perhaps best known for inventing an imaging x-ray spectrometer which uses the thermomigration of aluminum, an achievement which earned him the 1984 Inventor of the Year Award from the National Aeronautics and Space Administration (NASA) and the Goddard Space Flight Center (GSFC).

Alcorn has over 20 inventions. Some of these have been patented while others have been published. He is a recognized pioneer in the fabrication of plasma semiconductor devices, and his patent “Process for Controlling the Slope of a Via Hole” was an important contribution to the process of plasma etching. This procedure is now used by many semiconductor manufacturing companies. Alcorn was one of the first scientists to present a computer-modeling solution of wet etched and plasma etched structures, and he has received several cash prizes for his inventions of plasma-processing techniques.

Alcorn has been extensively involved in community service. In 1984, he was awarded a NASA-EEO medal for his contributions in recruiting minority and women scientists and engineers and his assistance to minority businesses in establishing research programs. He is a founder of Saturday Academy, which is a weekend honors program designed to supplement and extend math-science training for inner-city students in grades six to eight. Alcorn also works with the Meyerhoff Foundation, founded by Freeman Hrabowski, whose goal is to encourage and support African American males interested in pursuing doctorates in science and engineering. Alcorn was honored by his alma mater Howard University in 1994 in its Heritage of Greatness awards ceremony. Alcorn was celebrated as a Black Achiever in the Science and Technology category. Alcorn married Marie DaVillier in 1969; they have one son, born in 1979. Alcorn’s younger brother Charles is a research physicist at IBM.
Norbert Rillieux (March 17, 1806 – October 8, 1894), an American inventor and engineer, is most noted for his invention of the multiple-effect evaporator, an energy-efficient means of evaporating water. This invention was an important development in the growth of the sugar industry. Rillieux was a cousin of the painter Edgar Degas.

Family

Norbert Rillieux was born into a prominent Creole family in New Orleans, Louisiana. He was the son of Vincent Rillieux, a white plantation owner, engineer and inventor, and his placée, Constance Vivant, a free person of color. Norbert was the oldest of seven children. His siblings were: Barthelemy, Edmond, Marie Eugenie, Louis, Marie Eloise, and Cecile Virginie. Norbert’s aunt on his father’s side, Marie Celeste Rillieux, was the grandmother of painter Edgar Degas. His aunt on his mother's side, Eulalie Vivant, was the mother of Bernard Soulie, one of the wealthiest Gens de Couleur Libre in Louisiana.

Early life

As a Creole, Norbert Rillieux had access to education and privileges not available to lower-status blacks or slaves. Baptized Roman Catholic, Rillieux received his early education at private Catholic schools in Louisiana before travelling Paris, France in the early 1820s to attend the famous Parisian school, École Centrale. While at École Centrale, Norbert studied physics, mechanics, and engineering. He became an expert in steam engines and published several papers about the use of steam to work devices. These early explorations became the foundation of the technology he would later implement in his evaporator. At 24, Rillieux became the youngest teacher at École Centrale, instructing in applied mechanics. He was also a competent blacksmith, an expert machinist and fluent in French.

Sugar refining

In the 1800s, the process for sugar refinement was slow, expensive, and inefficient. The most common method of converting sugarcane into sugar was called the ‘Jamaica Train’ method. The sugarcane juice was pressed from the cane and then poured into a large kettle, where it was heated and left until most of the water evaporated. The workers, who were mostly slaves, poured the resultant thick liquid into smaller and smaller pots as the liquid continued to thicken. Each time the liquid was poured, some of the sugar was lost. A considerable amount of sugar was also burned because it was difficult to monitor and maintain appropriate heat levels for the pots. The process was also dangerous for the workers, who had routinely to transfer the hot liquid.

While in France, Norbert Rillieux started researching ways to improve the process of sugar refining. Meanwhile, back in Louisiana, Norbert’s brother, Edmond, a builder, along with their cousin, Norbert Soule, an architect, began working with Edmund Forstall to build a new Louisiana Sugar Refinery. In 1833, Forstall, having heard about Rillieux’s research into sugar refining, offered him the position of Head Engineer at the not-yet-completed sugar refinery. Rillieux accepted the offer and returned to Louisiana to take up his new position. However, the sugar refinery was never completed due to disagreements between the principals, mainly Edmond Rillieux, his father, Vincent Rillieux, and Edmund Forstall. These disagreements created long-term resentments between the Rillieux family and Edmund Forstall.

In spite of the failure of the collaboration, Norbert Rillieux remained focused on improving the sugar refining process, developing his machine between 1834 and 1843, when he patented it. The multiple-effect evaporation system that he said addressed both the spillage that resulted from transfer and the uneven application of heat, as well as making the process safer for workers. The system utilizes a vacuum chamber or a container with reduced air to lower the boiling point of the liquids. Inside this several pans are stacked to contain the sugarcane juice. As the bottom pans heat, they release steam to transfer heat to the pans above. The heat is more easily controlled than in the Jamaican Train method, because one source is fed, at a lower temperature, for multiple pans of sugarcane juice. This prevents the sugar from being burned and discolored. As the workers do not have to transfer the liquid, sugarcane is not spilled and they are at a reduced risk for burns.

Several years after patenting the system, Norbert Rillieux successfully installed it at Theodore Packwood’s Myrtle Grove plantation. Not long after this, Rillieux’s new system was installed at Bellechasse, a plantation owned by Packwood’s business partner, Judith P Benjamin. Benjamin and Rillieux became quite good friends, possibly due to their similar social situation; they were both considered outsiders in Louisiana’s very class-conscious society.

After these successes, Norbert Rillieux managed to convince 13 Louisiana sugar factories to use his invention. By 1849, Merrick & Towne in Philadelphia were offering sugar makers a choice of three different multiple-effect evaporation systems. They were able to select machines capable of making 6000, 12000, or 18000 pounds of sugar per day. The evaporators were so efficient that the sugar makers were able to cover the costs of the new machine with the huge profits from the sugar produced with Norbert Rillieux’s system.

Other work

Rillieux also turned his engineering skills to dealing with a Yellow Fever outbreak in New Orleans in the 1850s. Rillieux presented a plan to the city that would eliminate the moist breeding grounds for the mosquitoes that carried the disease by addressing problems in the city’s sewer system and drying swamplands in the area. The plan was blocked by Edmund Forstall, now a state legislator. Several years later, the ongoing Yellow Fever outbreak in New Orleans was addressed by white engineers using a method extremely similar to what Rillieux had proposed.

Later life

Norbert Rillieux returned to France in the late 1850s. In Paris, Rillieux became interested in Egyptology and hieroglyphics, which he studied with the family of Jean-François Champollion. He spent the next decade working at the Bibliothèque Nationale.

In 1881, at the age of 75, Rillieux made one last foray into sugar evaporation when he adapted his multiple-effect evaporation system to extract sugar from sugar beets. The process for which he filed patent was far more fuel-efficient than that currently in use in the beet sugar factories in France. Prior to Rillieux’s invention, two engineers developed a vacuum pan and electric coils to improve the process of making sugar, but this was unsuccessful due to the use of steam at wrong locations in the machine. Rillieux’s process fixed the errors in the previous process, but Rillieux lost the rights to the patent he had filed.

Norbert Rillieux died on October 8, 1894 at the age of 88. He is buried in the Père Lachaise Cemetery in Paris. His wife, Emily Cuckow, died in 1912 and is buried beside him.

References

This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please improve this article by introducing more precise citations. (September 2008)

- University of California (1999). Benfrey, Christopher.., Degas in New Orleans: Encounters in the Creole World of Kate Chopin and George Washington Cable
Jan Ernst Matzeliger, Inventor

Jan Ernst Matzeliger (September 15, 1852 – August 24, 1889) was an African-American inventor in the shoe industry.

Matzeliger was born in Paramaribo (then Dutch Guyana, now Suriname). His father was a Dutch engineer and his mother a black Surinamese slave. He had some interest in mechanics in his native country, but his efforts at inventing a shoe-lasting machine began in the United States after a life of working in a machinery shop. He settled in Philadelphia, Pennsylvania at 19 after working as a sailor. By 1877, he spoke adequate English and had moved to Massachusetts.

After a while, he went to work in a shoe factory. At the time, no machine could attach the upper part of a shoe to the sole. This had to be done manually by a "hand laster"; a skilled one could produce 50 pairs in a ten-hour day.[1]

After five years of work, Matzeliger obtained a patent for his invention in 1883.[2] His machine could produce between 150 to 700 pairs of shoes a day, cutting shoe prices across the nation in half.[2] However, his early death in Lynn, Massachusetts from tuberculosis meant he never saw the full profit of his invention.

In recognition of his accomplishment, he was honored on a postage stamp on September 15, 1991.[3]

== Patents ==

1. 274,207, 3/20/1883, Automatic method for lasting shoe
2. 421,954, 2/25/1890, Nailing machine
3. 423,937, 3/25/1890, Tack separating and distributing mechanism
4. 459,899, 9/22/1891, Lasting machine
5. 415,726, 11/26/1899, Mechanism for distributing tacks, nails, etc.
6. 123,456, 11/19/1888
She was the first African-American female reporter for The New York Times, and at the time of her death, The Oakland Tribune was the only metropolitan daily newspaper to have been owned by African-Americans. Maynard was born Nancy Alene Hall in Harlem, New York City, to jazz bassist, Alfred Hall and Eve Keller, a nurse. During her first few years at 'The NEW YORK Times', Maynard covered important race-related stories such as race riots and Columbia and Cornell University black student takeovers, as well as politically significant events like a memorial for Robert F. Kennedy. She later wrote for the paper's education and science news departments, primarily on health-care coverage. Until 1950, African Americans were a small but historically important minority in Boston, where the population was overwhelmingly white. Since then, Boston's demographics have changed due to factors such as immigration, white flight, and gentrification.

Despite being in the minority, and despite having faced his first major acting role was as Lincoln B. Hayes on Aaron Spelling's TV series The Mod Squad. He has guest-starred in television shows such as Hill Street Blues, Miami Vice, The Highwayman, Twin Peaks, Star Trek: Deep Space Nine, Burn Notice, Everybody Hates Chris, and in a recurring role as Philby Cross in the Mystery Woman movie series on the Hallmark Channel. He also played a supportive role as George Wallace's fictional African-American butler and caretaker in the 1997 TNT TV movie George Wallace. He portrayed Ellsworth Raymond "Bumpy" Johnson in American Gangster in 2007. Williams is not listed in the movie credits for the film.